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A SHOCK-CAPTURING SCHEME FOR BODY-FITTED 
MESHES 

P. GLAISTER 
Department of Mathematics, P.O. Box 220, University of Reading, Whiteknights, Reading RG6 2AX, U.K. 

SUMMARY 
A finite difference scheme based on flux difference splitting is presented for the solution of the two- 
dimensional Euler equations of gas dynamics in a generalized co-ordinate system. The scheme is based on 
numerical characteristic decomposition and solves locally linearized Riemann problems using upwind 
differencing. The decomposition is for a generalized co-ordinate system and a convex equation of state. This 
ensures good shock-capturing properties when incorporated with operator splitting and the advantage of 
using body-fitted co-ordinates. The resulting scheme is applied to supersonic flow of ‘real air’ past a circular 
cylinder. 
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1. INTRODUCTION 

The approximate (linearized) Riemann solver of Roe’ has proved to be successful in its 
application to the compressible flow of an ideal gas in one dimensioq2 and in two dimensions 
when incorporated with operator ~pl i t t ing.~ A similar Riemann solver was proposed by Glaister4 
for compressible flows in one dimension and general convex equations of state. This scheme was 
extended5 to the two-dimensional Euler equations in Cartesian co-ordinates and general convex 
equations of state using operator splitting. 

In this paper we seek to extend further the analysis of Glaister to a generalized co-ordinate 
system. The resulting scheme can be used with non-Cartesian, body-fitted meshes in two 
dimensions. The area of generating body-fitted meshes is one that is increasing in importance.6* ’ 

In Section 2 we consider the Jacobian matrix of one of the flux functions for the Euler equations 
in a generalized co-ordinate system, and in Section 3 derive an approximate Riemann solver for 
the solution of these equations. Finally, in Section 4 we describe a two-dimensional test problem 
and display the numerical results achieved using the scheme of Section 3. 

2. EULER EQUATIONS 

In this section we state the equations of motion for an inviscid, compressible fluid in two 
dimensions in terms of two generalized space co-ordinates. We also give the eigenvalues and 
eigenvectors of the Jacobian of one of the corresponding flux functions. 
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2.1. Equations offlow 

written in generalized co-ordinates (, r]  as 
The two-dimensional Euler equations for the flow of an inviscid, compressible fluid can be 

( Jw), + F ,  + G, = 0, (1) 

(2) 

(3) 

(4) 

(5 )  

(6% b) 

where 

w = ( P ,  P U ,  P O ,  e)*, 

F(w) = (pu, Y , P  + P U U ,  - X,,P + PUU, u ( e  + P ) ) ~ ,  

G(w) = ( P  K - Y ~ ; P  3- PU v, X ~ P  + P O  v, V e  + p)IT, 

e = pi + +p(u2 + u 2 )  

u = y,u - x,u, 

and 

v =  x r u  - y p .  

The Jacobian of the grid transformation x = x(5, q), y = y(5, q) from Cartesian co-ordinates x, y to 
generalized co-ordinates 5, r]  is given by 

J = x < y , - x , y < .  (7) 

The quantities P = At, r ] ,  t ) ,  u = 4 5 ,  q, t ) ,  u = ti(t, r ] ,  t ) ,  P = p ( t ,  q, t ) ,  i = i(5, r ] ,  t )  and e = e ( t ,  q, t )  
represent the density, the velocity in the x and y co-ordinate directions, the pressure, the specific 
internal energy and the total energy respectively at a general position 5, r]  in space and at time t. In 
addition, we have an equation of state of the form 

P = P(P, 9. (8) 

P = - l ) P i ,  (9) 

In the case of an ideal gas, equation (8) takes the form 

where y is the ratio of specific heat capacities of the fluid. 

2.2. Structure of the Jacobian 

We now give the Jacobian of the flux function F(w), and its eigenvalues and eigenvectors, since 
this information, together with similar information for the Jacobian of G(w), will form the basis 
for the approximate Riemann solver. 

The Jacobian A = aF/aw of the flux function F(w) is given by 

A =  

0 Y ,  - x ,  0 

Pi Pi -x , ,u-Y,u-  
P Y,F  

- u u  y ,u+x,u-  Pi U-X,U( 1 -;) -x,; Pi 
P 

y,H - uu-! P .  -x,H - v U 2  P .  U (  1 + Pi -' 
P P P ,  
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where the fluid speed q, enthalpy H and sound speed a are given by 

q 2  = u2 + u2 ,  

and 

H = p / p  + i +&q2 

a2 = PPi/P2 + ~ p ,  

and the quantities pi ,  pp denote the derivatives dp(p, i ) / & l p ,  d p ( p ,  i ) / d p J ,  respectively. The 
eigenvalues li of A are given by 

L ~ , ~ , ~  = u a,/(.: + Y:), U ,  u ( 14a-d) 
with corresponding eigenvectors 

1,u,u,i++(u2+v2)-- 
Pi 

and 
e4 = (0, x,, Y,, x,u + Y,U)'. ( 1 5 4  

Similar results hold for the Jacobian of G(w) as follows. The eigenvalues of G are 

J - , , ~ , ~ , ~ =  v t a J ( x i + v ; ) ,  V, v 
with corresponding eigenvectors 

e3 = (1, u, u, i+$(u2 + v 2 )  - ppp/pilT 

e4=(0, -xg, -y< ,  - X ~ - Y ~ U ) ~ .  
and 

In the next section we develop an approximate Riemann solver based on the results of this 
section. 

3. APPROXIMATE RIEMANN SOLVER 

We propose solving equations (1)-(8) using operator splitting, i.e. we solve successively 

$( Jw), + F, = 0 ( 164 

and 

&( Jw), + G, = 0 

along < and FI co-ordinate lines respectively. We describe the scheme for solving equation (16a), 
and the solution of equation (16b) will follow in a similar way. 

3.1. Linearized Riemann problem 

If the solution of equation (16a) is sought along a 5 co-ordinate line given by q = 'lo, a constant, 
using a finite difference method, then the solution is known at a set of discrete mesh points 
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(r, q, t ) = ( t j ,  qo, t,) at any time t,. Following Godunov,’ the approximate solution w; to w at 
(tj, qo, t,) can be considered as a set of piecewise constants w = wj” for t e ( t j - A t / 2 ,  t j+At /2 )  at 
time t , ,  where A t  = t j -  ti- is a constant mesh spacing. A Riemann problem is now present at 
each interface t j -  112 =%tj- +t i )  separating adjacent states wy- ’, wj”. We consider solving the 
linearized Riemann problem 

(17) $( J w ) ,  + a(wj”- ’, w ~ ” ) w ~  =: 0, 

where Aj-l/2 = A(w;- , ,  w;) is an approximation to the Jacobian A and is a constant matrix 
depending on the states either side of t j - l / 2 .  This matrix ,xj-l/2 will be required to satisfy the 
following three properties: 

(i) Aj-112(w7-1,w3+A(w) as ~ j ” - ~  +wj”+w.  
(ii) A,- 112 has four linearly independent- eigenvectors. 
(iii) A F  = Aj-  l l tAw. 

These properties were shown by Roe’ in the ideal gas case in Cartesian co-ordinates to guarantee 
conservation and have good one-dimensional shock-capturing properties. 

3.2. Numerical scheme 

Once such a matrix has been constructed, equation (17) can be solved approximately as 

where k can be j - 1 or j, At = tn+ - t, is a constant time step and J j -  112 is an approximation to 
the grid Jacobian at (5, q)  =(ti- qo). If we project 

4 

i =  1 
AW = W; - w?- = C 6&, (19) 

where Oi are the eigenvectors of Aj- 1/2, then equation (18) can be written as 
A 

where X i  are the eigenvalues of Aj-112 .  Equation (20) now gives rise to the following first-order 
upwind algorithm: 

and 

This is a form of the scheme written in a cell-based manner. Equations (21a, b) represent the 
increment of $- 1, wy due to the interface at t j -  1/2. There will be similar increments to wy- due 
to the interface at t j -3 /2  when considering the cell ( g j - 2 ,  ti-l), and to w; due to the interface at 
t j+  112 when considering the cell (tj ,  t j+  l). 

can be 
made. 

Extensions of this first-order algorithm to second orderg and to non-uniform 
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3.3. Grid generation and grid Jacobian 

The purpose of this paper is to present an approximate Riemann solver for use with non- 
Cartesian body-fitted co-ordinates. The mapping from physical (x - y) space to computational 
( t - q )  space can be given analytically or constructed numerically.12 In the case where the 
mapping x = x(5, q), J) = y(5 ,  q) is known analytically, we caii approximate J j -  1/2  in equa- 
tion (1 8) as 

J j -  1/2 = (XCY, -x,~<)(tj-1/2, ~ 0 ) ;  (21) 
alternatively, J j -  1/2 can be approximated using central differences. In addition, we will need a 
suitable approximation xi-1/2 for x,, at ( < j - l / 2 ,  qo), and in the analytic case we take 

xq(t j -  1/29 V O )  (22) x3-1 /2  = 
'I 

as in equation (21); otherwise we set xi-'/' to be the arithmetic mean of central difference 
approximations to x, at (tj-l, qo)  and (tj ,  qo). Similar approximations hold for x r ,  y, 
and yC. 

3.4. Construction ofdj- 1/2  

Consider a 5 co-ordinate line given by q = qo, a constant, and denote points t j -  1 ,  t j  on this line 
by cL, tR respectively. In addition, we denote wy- = wL, wj" = wR and assume that X = xi- 1 / 2 ,  

Y = y i -  v2 denote approximations to x,,, y, that are constant in the interval (tL, tR). Our aim is to 
construct a matrix dj- = d(wL, wR) satisfying properties (iHiii) of Section 3.2. Equivalently, we 
could find average eigenvalues xi  and average eigenvectors Zi of the Jacobian A at tL, 5, given by 
equations (14aH15d) such that 

A 

Aw= 1 EiZi (23a-d) 
i =  1 

and 
4 

AF= C X i i i i Z i  
i =  1 

for some wavestrengths Eii, where 

A(') = (.)R - (*)L. 

This yields the approximate Jacobian 

(24a-d) 

- 
dj- 112 = M j -  1 / 2 0 j -  1/2fiy-'1/2 (26) 

with the required properties, where wj- 112 = [ E l ,  E 2 ,  Z3, E,] and Dj-  1/2 = 
diag(X,, x,, I,, x4). The choice of wavestrengths in equations (23a)-(24d) is made by initially 
considering states wL and wR that are close to some average state w as follows. 

We seek a,, ct2, ct3 and u4 such that 
4 

Aw = 1 uiei 
i =  1 

(27a-d) 

to second order, where e, are given in Section 2 and wL, wR are close to some average state w. After 
some manipulation we find that equations (27a-d) yield the following expressions 
for ui: 
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X A u +  YAu 
a 4 = P  

x 2 + y r ’  

where we have made the assumption that to second order 

A(pZ) = Z A P  + pAZ, Z = u, v, H or i, 

A(pZ2) = Z z  Ap -t 2p 262, Z = u or v, 

(29a-d) 

(30% b) 

and 

Ap = ppdp + piAi. (3 1) 

With the expressions given by equations (28a-d) it is possihle to show that 
4 

AF = Aiciiei (32) 
i= 1 

to second order. 

equations (23aW24d) are satisfif $ exactly, where 
We now return to the general case, i.e. consider two states wL, wu not necessarily close such that 

(33a-d) xi = ii f iiJ(X2 + P), 0, 0,  

g3 = (l,U”, 6, ? + f ( U 2  + 6 2 )  - ppp/pi)T, 

c4 = (0, x, Y, x i i  + Yv”)T, 

pii( YAu - XAU) 

- XAu + YAv 
5 4 = p  p + y 2  ’ (354 

zr= YU-xi7 (36) 

(37) 

and 

6 2  = p ,  + p p i / p 2 .  

Thus we have to determine averages 8, U, 6, &, pp, p’ and Tsuch that equations (23aH24d) are 
satisfied subject to equations (33aH37). This problem has a solution and can be determined in a 
similar way to that of Glaister’ for the Cartesian case. The required averages are 

(3 8a-d) 

(39) 
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and 

Ap = p”,Ap + piAi, (41) 
and suitable approximations satisfying equation (41) are 

The approximate Riemann solver presented here can now be implemented as in equations 
(21a, b), where the required wavespeeds x i ,  wavestrengths Fii and associated directions Ci are given 
by equations (33aH43b). In particular, the required approximate Jacobian is given by 

r 0 Y - X  0 1  

In the next section we describe a test problem used to test the algorithm of this section. 

4. TEST PROBLEM AND NUMERICAL RESULTS 

In this section we describe a standard test problem in two-dimensional gas dynamics and give the 
numerical results achieved for this problem using the Riemann solver described in Section 3. 

The problem is that of uniform flow of ‘real air’ past a circular cylinder. The equation of state 
used can be written as 

p = ( Y ( P ,  i)- 1)Pi, 

where the form of y(p, i) is determined via curve fits to experimental data.I3 The radius of the 
cylinder is 0.5 and the initial conditions chosen are p = 1.4, u = 8.0, u = 0 and p = 1, corresponding 
to Mach 8 flow. An 0-type computational mesh is used and thus the grid transformation is from 
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Figure 1. Density contours at t = 0.2; uniform mesh 

Figure 2. Density contours at t = 0.4; uniform mesh 

Figure 3. Density contours at t = 0.6; uniform mesh 
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Figure 4. Density contours at t = 0.2; non-uniform mesh 

Figure 5. Density contours at t = 0.4; non-uniform mesh 

/ 

Figure 6. Density contours at t = 0.6; non-uniform mesh 
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Figure 7. Uniform mesh 

Figure 8. Non-uniform mesh 

(x, y) physical space to (t, q )  = ( R ,  Cp) computational space, where R ,  Cp are standard plane polar 
co-ordinates. Because of the line of symmetry along Cp = n and the supersonic conditions along 
$ = n/2, the region of computation considered is ( R ,  4) E [@5,  R,,,] x [n/2, n]. (The exterior 
of the boundary is taken as R, , ,=3  for the computations shown here.) The 
grid spacing in the 4-direction is uniform wilh 32 grid lines given by Cpj = ( j  -*)n/64 + n/2, 



SHOCK-CAPTURING SCHEME 1105 

j = 1, . . . , 32. In the R-direction two types of grid spacing are chosen. The first type of grid 
spacing is uniform with 33 grid lines given by Rj=(j-$)5/66+0.5, j =  1, . . . , 33. 
The second grid spacing is of a non-uniform geometric type with 34 grid lines given by 
R,  = 0.5 + + k ,  R, = Rj- , + k p J - 2 ,  j = 2, . . . , 34, where k = z/1280 and ,u = 1.1648336. Along 
4 = z a symmetry boundary condition is applied and along 4 = 4 2  supersonic boundary 
conditions are applied. Reflecting boundary conditions are applied along the surface of the 
cylinder R = 0.5 and inflow conditions are applied along R = R,,,. The scalar scheme used is first- 
order;7 however, a second order TVD (total variation diminishing) scheme could be used. 

Figures 1,2 and 3 display the density contours at  t = 0.2,0.4 and 0.6 respectively for the mesh 
with uniform spacing in the R-direction. Corresponding results for the case where the mesh 
spacing is non-uniform in the R-direction are shown in Figures 4,5 and 6. In both cases the shock 
has been captured over at most three cells. Figures 7 and 8 show the uniform mesh and non- 
uniform mesh respectively. These results are comparable with those of Osher. l4 

5. CONCLUSIONS 

We have presented an approximate linearized Riemann solver for two-dimensional compressible 
flows using body-fitted co-ordinates. The resulting scheme has been applied to supersonic flow of 
a real gas past a circular cylinder. The numerical results achieved show that the shock has been 
captured over only a few cells. Furthermore, the scheme developed applies to any convex 
equation of state and to any regular body-fitted mesh. 
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